NASA TECHNICAL
MEMORANDUM

NASA TM X-53641
. July 31, 1967

NASA TM X-53641

AN ANALYSIS OF THE MOLECULAR KINETICS OF THE
THERMOSPHERE PROBE

by James O, Ballance
Aero-~Astrodynamics Laboratory

NASA

George C. Marshall
Space Flight Center,

Huntsville, Alabama




TECHNICAL MEMORANDUM X-53641

AN ANALYSIS OF THE MOLECULAR KINETICS OF THE THERMOSPHERE PROBE °

By

’
/

' James 0. Ballance
George C. Marshall Space Flight Center

Huntsville, Alabama
ABSTRACT

A Monte Carlo computer analysis of the free molecular flow charac-
teristics of the thermosphere probe used to measure gas temperature and
density in the altitude range of 140 kilometers to 350 kilometers is
described, The transmission probability which is required to relate the
ambient density to the measured density is calculated for a simplified
geometric configuration which compares well with measured signals except
at high angles of attack where the simplified model of the system fails.
The time response of the system seems to be adequate for the mode of
measurements, and comparison with measured signals indicates that the
incoming molecules made no more than 1 specular reflection if, indeed,

any at all,
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DEFINITION OF SYMBOLS

Symbol Definition

F(S) 3% - Vx sIL - ERF(S)]

A ratios of duct

k Boltzmann's constant

m mass of molecule

v average speed of molecule

Vm most probable speed of molecule
N number density of molecules

T absolute temperature

U free stream velocity

o4 angle of attack

S speed ratio, U/V

L length of duct

K Clausing probability factor (transmission probability)
Z number of molecules

P pressure

A, area of entrance orifice

Ay area of exit orifice

TP thermosphere probe
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AN ANALYSIS OF THE MOLECULAR KINETICS OF THE THERMOSPHERE PROBE

SUMMARY

A Monte Carlo computer analysis of the free molecular flow charac-
teristics of the thermosphere probe used to measure gas temperature and
density in the altitude range of 140 kilometers to 350 kilometers is
described. The transmission probability which is required to relate the
ambient density to the measured density is calculated for a simplified
geometric configuration which compares well with measured signals except
at high angles of attack where the simplified model of the system fails,
The time response of the system seems to be adequate for the mode of
measurements, and comparison with measured signals indicates that the
incoming molecules made no more than 1 specular reflection if, indeed,
any at all,

I, INTRODUCTION

The thermosphere probe (TP) is an ejectable, sounding-rocket-
borne system developed by the Space Physics Research Laboratory,
Department of Electrical Engineering, University of Michigan, which
makes simultaneous direct measurements of gas temperature and density,
ion and electron density, and electron temperature in the earth's
atmosphere in the altitude range from 120 km to 350 km. Among the
complement of instruments used in this probe is an omegatron partial
pressure gauge. A very critical area in the analysis of the data from
this instrument is attenuation of the measured signal due to the veloc-
ity of the probe and the duct coupling the sensing region to the atmos-
phere. Previous theoretical approaches deviated from measured responses
by as much as 20 percent [l1]. This report describes a Monte Carlo analy-
sis of the system, presents the results of this analysis, and compares
these results with actual flight data.




IT, DESCRIPTION OF THE OMEGATRON

The TP is a cylindrical probe approximately 32 inches long and
6 inches in diameter. The omegatron is located at one end of the cylin-
der with a circular duct protruding along the axis. A break-off device
covers this duct and seals the system until operating altitudes are
attained. Ignoring all details external to the probe cavity, figure 1
presents the internal duct configuration for the omegatron sensor show-
ing the location of the sensing element. Basically, this cylindrical
duct is 1 inch in diameter and approximately 1 7/16 inches long with a
.438-inch diameter orifice connected to a rectangular duct about 3 3/4
inches long with sides of 1 inch and 1.312 inches. The omegatron sens-
ing element is a cubic configuration approximately .688 inch on each
edge having its center located along the axis of the cylindrical about
4 inches from the orifice. The detailed description of this sensor is
not necessary for this analysis; however, an important feature is that
the side of the cube which faces toward the orifice is solid plate.
(A complete description of the omegatron is found in reference 2.)
Thus, molecules entering the orifice must travel down the duct and pass
between the duct wall and the forward plate before they can enter the
sensing volume. Only those molecules which pass into the cubic volume
can be measured.

ITI, MODIFIED CONFIGURATION FOR ANALYSIS

While the exact configuration of the omegatron could be analyzed by
coupling several Monte Carlo programs, it was felt that a modified con-
figuration could be used to obtain data with sufficient accuracy using
only one program. Accordingly, the following assumptions were made:

(a) The conical section of ducting at the orifice could be
eliminated, and the orifice could be considered to be an
ideal orifice in an infinitely thin plane. '

(b) The entire duct could be considered to be a cylinder.

(c) The limiting parameter at the sensor is the face toward
the orifice. This parameter could be characterized by
considering a circular disc within the cylinder whose area
is the same proportion to the cross-sectional area of the
cylinder as the cubic face area is to the cross-sectional
area of the rectangular duct,

With these assumptions, a configuration with the following param-
eters was used (figure 2):




(a) The ratio of the length of the cylinder, L, to the radius
of the cylinder, A;, L/A; = 5.5

(b) The ratio of the radius of the orifice, A
of the cylinder, Ay, (Ag/A;) = .438,

o» to the radius

(¢c) The ratio of the radius of the circular disc, Ap, to the
radius of the cylinder, A,, (Ap/A;) = .6.

IV, COMPUTER RESULTS

A. General Remarks

Using the input values from section III above, a Monte Carlo analy-
sis was made of this configuration for speed ratios of 0.5, 1.0, 1,5,
1.64, 2,0, 2,38, 2.5, 2,7, and 3.0 at angles of attack of 0°, 10°, 20°,
30°, 45°, 60°, 75°, 90°, and 105°. Each molecule was followed until it
exited or until it made 150 collisions. If it had made 150 collisions
and had not yet exited the system, it was discarded. Very few were
discarded, never more than 5 out of each sample of 10,000, The limit of
150 collisions was merely an arbitrary limit,

The transmission probability, K, (the probability that a molecule
entering the orifice will pass through the tube and enter the sensor
volume) is required to relate the density measured in the sensor volume
to the ambient density through which the probe is passing. Appendix A
presents the equations for this relationship involving the transmission
probability. K is not only a function of the geometry, the speed ratio,
and the angle of attack, but is also a function of the type of reflection
a molecule makes after colliding with the surface. For vacuum systems
where the mass velocity of the gas is small in comparison with the mean
thermal speed of the molecules, diffuse reflections are assumed, As
the relative velocity increases, as in a rocket probe, this may not be
true, Accordingly, this program was written so that the molecules could
make some number of specular collisions and after that number the remain-
ing collisions, until they exited, were diffuse. The notation used to
identify this parameter is zero specular, which means all reflections
are diffuse, 1 specular, meaning that the first collision was specular
and all subsequent diffuse, 2 specular, meaning that the first two col-
lisions were specular and all subsequent diffuse, etc. The results of
changing the parameter are clearly identified.



In addition to transmission probability, some information can be
obtained from the program concerning the time of passage from the orifice
to the sensor. This was done by assuming that the molecules traveled at
the relative mass velocity of the probe until they were diffusely reflec-
ted from the walls at which time they traveled at a speed representative
of the temperature of the probe. While these results are certainly not
exact, they should point out any major time response problem if one
existed,

B. Transmission Probability in Diffuse Reflections

Figures 3 through 11 present the transmission probabilities for the
modified thermosphere probe configuration as a function of the angle of
attack for various speed ratios. The expected trend of decreasing values
of K with increasing values of the angle of attack is evident, 1In these
figures, it is noticeable that, as the speed ratio increases, the value
of K goes through a minimum and rises again and that the minimum value
shifts toward lower angles of attack as the speed ratio increases.

While this trend is not significant in its magnitude, it is not
believed to be representative of the original probe response, because of
the initial assumptions of considering the entrance orifice as a pure
orifice in an infinitely thin disc thus ignoring the conical section
that actually contributes significantly to the flow properties at high
angles of attack., This is shown more fully in the comparison of the
Monte Carlo results with flight data.

Figure 12 shows the transmission probability for speed radios of 1,
2, and 3 and illustrates a significant feature of all types of probes at
angles of attack. There is a particular angle of attack at which the
transmission probability is independent of the speed ratio. This angle
is usually near 30°, and the value of the transmission probability at
that angle is approximately the value for the configuration when S equals
0. For this configuration, the transmission probability for S equals 0
is 0,640 where, for figure 12, the common value for the three speed
ratios is approximately 0,660,

C. Specular Reflections

Tables I, II, and III contain the results of a study of specular
reflection effects on the value of the transmission probabilities or at
speed ratios of 1, 2, and 2,7, respectively. There is little difference
between the K values for no specular reflection and 1 specular reflec-
tion,but there is a significant difference when there are 2 or more
specular reflections. Also, for 2 or more specular reflections, the
largest value of the transmission probability does not occur at zero angle
of attack where the largest value does occur for diffuse reflections.




D. Time Response

Figure 13 presents typical results of the study of the time
response characteristics of the thermosphere probe. For all speed
ratios it requires more than 10 to 20 milliseconds for those molecules
entering the omegatron sensor to transverse the tube., Since in normal
operation the thermosphere probes tumble with a period of approximately
2 seconds, this means that in 10 milliseconds the orifice has swept
through an angle of only 2 degrees so that essentially instantaneous
response can be assumed through the analysis.

V. COMPARISON WITH FLIGHT DATA

The difference between the measured response and the theoretical
response for the thermosphere was shown in reference 1. This same type
of comparison is shown in figure 14 using the theoretical values as
determined by the Monte Carlo analysis. Here the ratio of the measured
signal to the theoretically produced value is shown as a function of the
angle of attack for various speed ratios., Diffuse reflections are
assumed for these comparisons. It is apparent that the two agree with
+ 2 percent for angles of attack up to 75 degrees where considerable
deviation begins., As mentioned earlier, this is believed to be due to
the deficiency of the model used in the program where the actual conical
orifice structure was not simulated in the configuration.

Although the comparison in figure 14 seems to be adequate, the
possibility that better, or at least as good, agreements could be
obtained with the theoretical values considering specular reflection.
Using the results in a speed ratio of 2.7, the signal values were com-
pared with the theoretical values (see tables IV through XII). From
this comparison, it may be concluded that most likely the molecules
did not have more than 1 specular reflection, if any at all.

VI, CONCLUSIONS

This study shows that Monte Carlo analysis of a simplified probe
configuration provides adequate information about the characteristics
of the thermosphere probe until the angle of attack becomes large enough
where certain geometrical features of the probe which were ignored in
the mathematical model begin to contribute a large error. Also, this
study shows that there should be no major problems in the response time
of the probe, Although a single specular reflection of the molecules
may be possible, the analysis does show that more than 1 specular
reflection does not appear to have occurred at these speed ratios.




Angle
0f Attack

0
10
20
30
Ls
60
75
90

105

.669
.668
.672
.665
645
.631
.632
.621

.620

Speed Ratio

674
.677
.661
.657
648
.639
.621
.625
.611

TABLE 1

Transmission Probabilities for the

.766
.762
. 766
.761
L7
.728
.720
.691
672

1.0

.792
.790
.791
.790
.787
774
. 764
. 747
.707

Number of Specular Reflections

.751
.753
.762
. 755
.768
.778
.785
.771
L7R1

Modified Thermosphere Probe Configuration

.758

. 748

.762
. 757
.763
779
. 795
.783
.767

10

.75k
747
.756
.752
.74k
734
.751
.765
.761



TABLE II

Transmission Probabilities for the

Modified Thermosphere Probe Configuration

Speed Ratio = 2.0

Number of Specular Reflections

Angle
of Attack 0 1 2 3 n 5 6 8 10
0 .706 .712  .798 .819 .755 .765 .76L  .766  .755
10 .719 .707 .802 .816 .763  .764 .765 .76L4  .753
20 .682 .688 .792 .805 .757 .767 .762 .755 .756
30 .663 .663 .773 .805 .770 .772 .765 .753  .748
L5 .628  .624 .713  ,769 .778 .768 .758 .746  .763
60 .607 .607 .688 749 .761 .770 .759  .744 749
75 .609 .609 .664 .717 .761 777 117 L7730 750
90 .598 .602 .643 .675 .723 .748 .774% .779 .7719

105 .610  .604  .622 .652 .673 L7040 .709 .739  .750




TABLE II1

Transmission Probabilities for the

Modified Thermosphere Probe Configuration

Speed Ratio = 2.7

Number of Specular Reflections

of ﬁiilik 0 ! 2 3 N 5 6

0 .738 .747 .827 .B31 .769 .762 .733
10 732 .727 .83 .827 .776 .767 .763
20 .690 .694 .811 .826 .763 .765 .760
30 .656 .656 .780 .819 .780 .772 .760
L5 .62 618 .719 .779 .794% .794  .769
60 .604 603 614 731 .763 .757 .771
90 .593 .542 .612 .657 ..692 .718 .745
105 612 618 .606 .624 .6L6  .668 .686

.762
.763
743
749
755
779
772
.701

10

. 755
749
74
. 745
.751
. 746
. 784
.726
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APPENDIX A

Response of A Probe in Free Molecule Flow

The response of a probe in free molecule flow is easily shown in
the following manner. Consider a cylindrical tube with an orifice
(area Ap)at one end opening to the atmosphere and another orifice
(area Aj) at the other end, opening to a sensor volume. The number of
molecules which enter the orifice (A,), which pass through the tube,
and which exit the tube at the other orifice (Ai) is given by

NV
0 0
Z, = F(S) AKX (L/R,S,)),
in 9 oo
where
Z. = number of molecules entering the sensor volume

in

No = number density of the ambient gas

V_= average speed of the ambient gas molecule

o]
[ 2kT,
m

k = Boltzmann's constant
m = mass of a molecule
T, = temperature of the ambient gas

S = speed ratio = U cos QMVm
U = mass velocity of the probe relative to the gas

Vm = most probable speed of ambient molecules

« = angle between the normal to the orifice and the velocity
vector

K (L/R,S,a) = Clausing probability factor in the direction
© from A to A;

L/R = length to radius ratio of the duct.
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The number of molecules in the sensor volume which leave that volume
through the orifice (Aj) and return to the atmosphere is given by

NsVs
Zout = "7 24K @/R,0,0),
where
zout = number of molecules leaving the sensor volume
Ns = number density of the gas in the sensor volume
Vs = average speed of the molecule in the sensor volume
2kT
“NTm
T = temperature of the gas in the sensor volume

s

K.(L/R,0,0) = Clausing probability function for the direction
i
from A; through A,.

For equilibrium conditions,

in out’

Thus,

N0‘-,0 NS‘-]S
5 F(S) AOKO(L/R,S,a) ==

AiKi(L/R,0,0).

When § = 0, T, = Tg and N, = Ng,
AOKO(L/R,O,O) = AiKi(L/R,0,0)

so that

[

= =2
Ky = A, KO(L/R,O,O).
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Thus,

~ Novo F(S) KO(L/R,S,a) Ao
s - Ao
vy KO(L/R,O,O) X; A,

N Vo F(S) KO(L/A,S,a)

V KO(L/A,O,O)

and
- XT
v 0
-_O = m = 'JTO/TS
A 2kT
s s
m
so that

K (L/R,S,Oc)
=N T[T, X(5) =2

s K (L/R,0,0) ’

or, in terms of pressure, since Nj =P,/

P K, (L/R,S,q)

q= NT /Ty F(S)K(L/ROO)
K (L/R,S,Q)

P, =P «/T /T F(S) ————K LR 0.0)
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